Methane uptake in fertilized soils - effect of NH₄NO₃ at different soil O₂ levels

Anna Walkiewicz

Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland Corresponding author: a.walkiewicz@ipan.lublin.pl

RATIONALE

Soil participates in global warming e.g. as a source or sink for greenhouse gases (GHGs). Given the mitigation potential, its capability of methane (CH₄) uptake is often under scientific considerations. Methanotrophs can consume atmospheric CH_4 (especially in forests and grasslands) or oxidize CH_4 produced in deeper soil layers or in anaerobic microsites, thus reducing its emission from soil. Land use influences the CH₄ uptake capacity and is often changed by **nitrogen (N) fertilization**, and ammonium nitrate is a very widely used fertilizer. Nitrogen is highly dynamic in soil and addition of ammonium (NH₄⁺) may

microbial

activity' soil

compaction

result in nitrate (NO_{3⁻}) accumulation due to nitrification.

The O₂ concentration is a dynamic parameter altered by natural soil moisture changes as well as root and

microbial activity.

The aim of the study was to determine CH₄ consumption (1%) in three arable soils of different types incubated with NH₄⁺, NO₃⁻ or NH₄NO₃ (100 mg N kg⁻¹) at

different O₂ levels (2, 5, 10, and 20 % v/v). Moreover, the concentrations of mineral N forms under different aeration were measured.

Haplic Podzol, and Mollic Gleysol enriched with 100 mg NH_4NO_3 kg⁻¹ at the end of incubation at different O₂ levels (20%, 10%, 5%, 2% v/v). The asterisk indicates significant difference in relation to $20\%O_2$ (p<0.05).

Fig. 1. Decrease in the CH₄ concentration with the time in the headspace of Eutric Cambisol, Haplic Podzol, and Mollic Gleysol incubated with CH₄ (1% v/v), without and with addition of 100 mg N kg⁻¹ in form of NH₄⁺; NO₃⁻ and NH₄NO₃. Soil samples were incubated under different O_2 levels (20%, 10%, 5%, 2% O_2 v/v).

SUMMARY AND CONCLUSIONS

- \checkmark Mineral arable soils completely oxidized added CH₄ (1%) under oxia and hypoxia.
- ✓ Hypoxia (5%; 10%O₂) was optimal for CH_4 uptake in all controls.
- ✓ Hypoxia (5%; 10%O₂) was optimal for methanotrophy in Podzol and Gleysol with NO_{3⁻}.
- ✓ All factors (N enrichment, soil type, oxygen level) may be significant and regulators of methanotrophy.
- ✓ Negative effect of NH_4^+ was the strongest at oxia (20%O₂) and microoxia (2%O₂).
- \checkmark Nitrates stimulated CH₄ consumption in all soils under 2%O₂.
- \checkmark Addition of NH₄NO₃ resulted in reduction of CH₄ consumption, with the exception of the variant with 2%O₂, where a lower N dose resulted in faster CH₄ oxidation than in the control.
- \checkmark NH₄NO₃ addition may differently affects CH₄ uptake than separately NH₄⁺ or NO₃⁻.
- \checkmark In all tested soils, the final NH₄⁺ concentration increased, whereas the level of NO₃⁻

REFERENCES

Alam, M.S., Jia, Z., 2012. Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil. Frontiers in Microbiology 3, 1-13.

Bodelier, P., Laanbroek, H., 2004. Nitrogen as regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology 47, 265-77.

Saari, A., Rinnan, R., Martikainen, P.J. 2004. Methane oxidation in boreal forest soils: Kinetics and sensitivity to pH and ammonium. Soil Biol Biochem 36, 1037-1046.

Walkiewicz, A., Brzezińska, M., Bieganowski, A. 2018. Methanotrophs are favored under hypoxia in ammonium-fertilized soils. Biol Fertil Soils 54, 861–870.

Walkiewicz, A., Brzezińska, M. 2019. Interactive effects of nitrate and oxygen on methane oxidation in three different soils. Soil Biol Biochem 133, 116-118.

This work was partly founded by the National Centre for Research and Development within ReLive project (CIRCULARITY/61/ReLive/2022), ERA-NET 2021 Joint Call on Circularity Programme.

The National Centre for Research and Development

