

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

Agroscope

N₂O emissions from a grazed pasture – Effects of urine patch characteristics and environmental drivers

ISCRAES 29.08.2022

Lena Barczyk, K. Kuntu-Blankson, P. Calanca, J. Six, C. Ammann e-mail: lena.barczyk@agroscope.admin.ch

Motivation: N₂O

Agroscope

- GHG ~300 CO₂-eq. & stratospheric ozone depletion
- Important source is agriculture

2

Motivation: Quantification of N₂O emissions from grazing

• Most countries use IPCC Tier1 default $EF \rightarrow N_2O$ quantified as a fraction of N input

EF ₃ old	EF ₃ new (aggregated)	EF ₃ new (disaggregated)
2.0 %	0.4 %	wet climates: 0.6 % dry climates: 0.2 %

Use of default EF involves uncertainties

- EF based on limited studies (NZ, UK, BR) Considerable range reported
- Contradictory results in influence of urine patch characteristics (total N, urine volume)
- Inconsistent seasonal pattern found in temperate climates
- \rightarrow Usage of higher Tiers (country-specific data needed)
- \rightarrow Further disaggregation recommended

Aims of study

- 1. Investigate the effect of urine patch characteristics on EF value
- 2. Determine EFs over the whole grazing season & identification of drivers

Realization

- Manual chamber N₂O measurements in a fenced-out subarea of pasture
- Controlled application of real & synthetic cattle urine in 10 experiments (U1-U10)
 - Standard urine patch applied in every experiment:
 - (2 L, 20g N total, 0.12 m^2 , 91% of N urea & 9% hippuric acid)
 - Varying urine N concentrations (same volume) \rightarrow U7, U10
 - Varying patch size \rightarrow U8
 - Varying urine volume \rightarrow U2, U3, U5
 - Varying urine water volume (same total N) \rightarrow U10

Urine N concentration

<u>Hypothesis:</u> N_2O emissions increase rather exponentially than linearly by increasing the N input.

→ Linear increase F_{N2O} by N input → EF stayed constant • U7 (08/2021) • U10 (05/2022) -- linear fit --- IPCC default new

Patch area

<u>Hypothesis:</u> Higher emissions from a smaller patch area (N input can exceed plant assimilation more easily)

→ No significant differences between treatment levels syn.urine ·-· IPCC default new

Urine volume

<u>Hypothesis:</u> EF decreases with increasing urine volume due to a deeper infiltration.

 \rightarrow EF stayed constant

Environmental drivers

- EF varied strongly (0.2-1.9%)
- Two main drivers were identified:
 - \rightarrow Cumulated precipitation 20 days past urination
 - → Averaged WFPS 30 days past urination

2.0

1.5

0.5

0.0

2020-07

2021-01

2021-07 Date

[%] 出 1.0

Eff N₂O-N=N_{input}·(0.04811P-0.00029P²-0.75550)/100 (R²=0.74, p<0.0001)

Eff N₂O-N=N_{input} (3.41WFPS-1.49)/100 (R²=0.42, p<0.001)

Agroscope

2022-01

Summary & Conclusion

- EF stayed constant for varying urine N inputs
 - \rightarrow confirms assumptions of constant EF
 - → contradictory findings in literature may be linked to site specific conditions controlling pasture N uptake & microbial activity
- No effect of (wetted) patch area on EF
 → effective patch area not known
- No effect of urine volume/urine liquid on EF
 - \rightarrow for site-specific soil texture
 - \rightarrow but potentially strong variation of soil infiltration capacity during the season
- EF varied strongly over the seasons linked to cumulated precipitation & mean WFPS
 - \rightarrow Microbial activity known to increase with WFPS
 - \rightarrow N leaching after excessive rainfall (decreasing EF at high rainfall values)

Outlook

- Implementation of higher Tiers (country-specific) for more accurate quantification of N₂O emissions → more data needed
- Effects of soil & climate zone have not been addressed here and might involve different results
- Fate of N in urine patches: quantitative analysis needed

Thanks for listening !

Lena Barczyk, lena.barczyk@agroscope.admin.ch