

The effect of an engineered biostimulant derived from *Ascophyllum nodosum* on grass yield under a reduced nitrogen regime in an agronomic setting

Patrick Quille

Emission Targets for Agriculture

Challenge: to maintain yields under reduced fertilizer use

- European Commission's Biodiversity Strategy 2030 targets: 20 % reduction in fertilizer use by reducing fertilizer losses by 50 %
- Irish agriculture: 25 % reduction in emissions by 2030

MTU

Can biostimulants be part of the solution?

This project:

- Calcium Ammonia Nitrate pellet fertiliser coated with a liquid seaweed (*Ascophyllum nodosum*) extract biostimulant
- Grass managed under different production systems

Engineered Biostimulant

Brandon

- Biostimulants: materials other than fertilisers, that promote plant growth when applied in low quantities (Zhang, 2007)
- Traditional application: foliar spray or irrigation
- This project: novel method of application via coating of pelletised fertiliser
- Calcium Ammonia Nitrate (C.A.N.) pellet fertiliser coated with PSI-362 (a liquid extract from Ascophyllum nodosum)

1x

Trial Set-Up

• Lysimeter Trials

- Simulated Pasture Set-up
 - Monthly applications of fertiliser
- 2 Soil Types: Loam and Silt-loam
- 3 rates of biostimulant application

• Farm Trials

- 13 different farm sites across Ireland
- Agronomic Farm Trials
 - Mixture of silage trials (1st, 2nd and 3rd cuts)
 - Pasture grazing trials

Results: Lysimeter Trials

DMD = Dry Matter Digestibility CP = Crude Protein

Results: Field / Farm Trial Data

Summary of all 11 field trials (silage harvesting) PSI-362 applied at 1x recommended rate

	Yield (kg DM ha⁻¹)	P value	Crude Protein (kg DM ha ⁻¹)	P value	Dry Matter Digestibility (kg DM ha ⁻¹)	P value
100 % N	4508 ± 192	0 775	840 ± 80	0 948	3352 ± 300	0.878
80 % N + PSI-362	4594 ± 225	0.775	847 ± 68	0.940	3426 ± 359	

Summary of pasture field trials

n = 17 for pasture site 1 with 5 grazings per replicate;

n = 2 for pasture site 2 with 5 grazings per replicate; control = protected urea

Site	Treatment	Daily Grass Growth (kg of DM/Ha)	P value	Dry Matter Digestibility (kg/Ha/day)	P value	Crude Protein (kg /Ha/day)	P value
1	100% N	60.9± 2.5	0.629	47.2 ± 1.9	0.132	13.2 ± 0.5	0.45
	75% N + PSI-362	59.3 ± 2.4		46.3 ± 1.9		14.8 ± 0.6	
2	100% N (PU)	92.4 ± 11.8	0.679	ND	N/A	ND	N/A
	75% N + PSI-362	99.4 ± 11.6		ND		ND	

Conclusions

- No loss in yield or grass quality under a reduced N regime (compared to the 100 % N control) when using PSI-362 coated fertiliser in a farm setting
- Effect observed across different farming systems (silage vs. pasture)
- Concentration effect

Acknowledgments

- Mr. Ewan Feeney
- Dr. Aisling Claffey
- Dr. Joanna Kacprzyk
- Dr. Shane O'Connell
- Assoc. Prof. Carl Ng

